peripheral neuropathy


Also found in: Dictionary, Thesaurus, Acronyms, Encyclopedia, Wikipedia.

Peripheral Neuropathy

 

Definition

The term peripheral neuropathy encompasses a wide range of disorders in which the nerves outside of the brain and spinal cord—peripheral nerves—have been damaged. Peripheral neuropathy may also be referred to as peripheral neuritis, or if many nerves are involved, the terms polyneuropathy or polyneuritis may be used.

Description

Peripheral neuropathy is a widespread disorder, and there are many underlying causes. Some of these causes are common, such as diabetes, and others are extremely rare, such as acrylamide poisoning and certain inherited disorders. The most common worldwide cause of peripheral neuropathy is leprosy. Leprosy is caused by the bacterium Mycobacterium leprae, which attacks the peripheral nerves of affected people. According to statistics gathered by the World Health Organization, an estimated 1.15 million people have leprosy worldwide.
Leprosy is extremely rare in the United States, where diabetes is the most commonly known cause of peripheral neuropathy. It has been estimated that more than 17 million people in the United States and Europe have diabetes-related polyneuropathy. Many neuropathies are idiopathic, meaning that no known cause can be found. The most common of the inherited peripheral neuropathies in the United States is Charcot-Marie-Tooth disease, which affects approximately 125,000 persons.
Another of the better known peripheral neuropathies is Guillain-Barré syndrome, which arises from complications associated with viral illnesses, such as cytomegalovirus, Epstein-Barr virus, and human immunodeficiency virus (HIV), or bacterial infection, including Campylobacter jejuni and Lyme disease. The worldwide incidence rate is approximately 1.7 cases per 100,000 people annually. Other well-known causes of peripheral neuropathies include chronic alcoholism, infection of the varicella-zoster virus, botulism, and poliomyelitis. Peripheral neuropathy may develop as a primary symptom, or it may be due to another disease. For example, peripheral neuropathy is only one symptom of diseases such as amyloid neuropathy, certain cancers, or inherited neurologic disorders. Such diseases may affect the peripheral nervous system (PNS) and the central nervous system (CNS), as well as other body tissues.
To understand peripheral neuropathy and its underlying causes, it may be helpful to review the structures and arrangement of the PNS.

Nerve cells and nerves

Nerve cells are the basic building block of the nervous system. In the PNS, nerve cells can be threadlike—their width is microscopic, but their length can be measured in feet. The long, spidery extensions of nerve cells are called axons. When a nerve cell is stimulated, by touch or pain, for example, the message is carried along the axon, and neurotransmitters are released within the cell. Neurotransmitters are chemicals within the nervous system that direct nerve cell communication.
Certain nerve cell axons, such as the ones in the PNS, are covered with a substance called myelin. The myelin sheath may be compared to the plastic coating on electrical wires—it is there both to protect the cells and to prevent interference with the signals being transmitted. Protection is also given by Schwann cells, special cells within the nervous system that wrap around both myelinated and unmyelinated axons. The effect is similar to beads threaded on a necklace.
Nerve cell axons leading to the same areas of the body may be bundled together into nerves. Continuing the comparison to electrical wires, nerves may be compared to an electrical cord—the individual components are coated in their own sheaths and then encased together inside a larger protective covering.

Peripheral nervous system

The nervous system is classified into two parts: the CNS and the PNS. The CNS is made up of the brain and the spinal cord, and the PNS is composed of the nerves that lead to or branch off from the CNS.
The peripheral nerves handle a diverse array of functions in the body. This diversity is reflected in the major divisions of the PNS—the afferent and the efferent divisions. The afferent division is in charge of sending sensory information from the body to the CNS. When afferent nerve cell endings, called receptors, are stimulated, they release neurotransmitters. These neurotransmitters relay a signal to the brain, which interprets it and reacts by releasing other neurotransmitters.
Some of the neurotransmitters released by the brain are directed at the efferent division of the PNS. The efferent nerves control voluntary movements, such as moving the arms and legs, and involuntary movements, such as making the heart pump blood. The nerves controlling voluntary movements are called motor nerves, and the nerves controlling involuntary actions are referred to as autonomic nerves. The afferent and efferent divisions continually interact with each other. For example, if a person were to touch a hot stove, the receptors in the skin would transmit a message of heat and pain through the sensory nerves to the brain. The message would be processed in the brain and a reaction, such as pulling back the hand, would be transmitted via a motor nerve.

Neuropathy

NERVE DAMAGE. When an individual has a peripheral neuropathy, nerves of the PNS have been damaged. Nerve damage can arise from a number of causes, such as disease, physical injury, poisoning, or malnutrition. These agents may affect either afferent or efferent nerves. Depending on the cause of damage, the nerve cell axon, its protective myelin sheath, or both may be injured or destroyed.
CLASSIFICATION. There are hundreds of peripheral neuropathies. Reflecting the scope of PNS activity, symptoms may involve sensory, motor, or autonomic functions. To aid in diagnosis and treatment, the symptoms are classified into principal neuropathic syndromes based on the type of affected nerves and how long symptoms have been developing. Acute development refers to symptoms that have appeared within days, and subacute refers to those that have evolved over a number of weeks. Early chronic symptoms are those that take months to a few years to develop, and late chronic symptoms have been present for several years.
The classification system is composed of six principal neuropathic syndromes, which are subdivided into more specific categories. By narrowing down the possible diagnoses in this way, specific medical tests can be used more efficiently and effectively. The six syndromes and a few associated causes are listed below:
  • Acute motor paralysis, accompanied by variable problems with sensory and autonomic functions. Neuropathies associated with this syndrome are mainly accompanied by motor nerve problems, but the sensory and autonomic nerves may also be involved. Associated disorders include Guillain-Barré syndrome, diphtheritic polyneuropathy, and porphyritic neuropathy.
  • Subacute sensorimotor paralysis. The term sensorimotor refers to neuropathies that are mainly characterized by sensory symptoms, but also have a minor component of motor nerve problems. Poisoning with heavy metals (e.g., lead, mercury, and arsenic), chemicals, or drugs are linked to this syndrome. Diabetes, Lyme disease, and malnutrition are also possible causes.
  • Chronic sensorimotor paralysis. Physical symptoms may resemble those in the above syndrome, but the time scale of symptom development is extended. This syndrome encompasses neuropathies arising from cancers, diabetes, leprosy, inherited neurologic and metabolic disorders, and hypothyroidism.
  • Neuropathy associated with mitochondrial diseases. Mitochondria are organelles—structures within cells—responsible for handling a cell's energy requirements. If the mitochondria are damaged or destroyed, the cell's energy requirements are not met and it can die.
  • Recurrent or relapsing polyneuropathy. This syndrome covers neuropathies that affect several nerves and may come and go, such as Guillain-Barré syndrome, porphyria, and chronic inflammatory demyelinating polyneuropathy.
  • Mononeuropathy or plexopathy. Nerve damage associated with this syndrome is limited to a single nerve or a few closely associated nerves. Neuropathies related to physical injury to the nerve, such as carpal tunnel syndrome and sciatica, are included in this syndrome.

Causes and symptoms

Typical symptoms of neuropathy are related to the type of affected nerve. If a sensory nerve is damaged, common symptoms include numbness, tingling in the area, a prickling sensation, or pain. Pain associated with neuropathy can be quite intense and may be described as cutting, stabbing, crushing, or burning. In some cases, a nonpainful stimulus may be perceived as excruciating or pain may be felt even in the absence of a stimulus. Damage to a motor nerve is usually indicated by weakness in the affected area. If the problem with the motor nerve has continued over a length of time, muscle shrinkage (atrophy) or lack of muscle tone may be noticeable. Autonomic nerve damage is most noticeable when an individual stands upright and experiences problems such as light-headedness or changes in blood pressure. Other indicators of autonomic nerve damage are lack of sweat, tears, and saliva; constipation; urinary retention; and impotence. In some cases, heart beat irregularities and respiratory problems can develop.
Symptoms may appear over days, weeks, months, or years. Their duration and the ultimate outcome of the neuropathy are linked to the cause of the nerve damage. Potential causes include diseases, physical injuries, poisoning, and malnutrition or alcohol abuse. In some cases, neuropathy is not the primary disorder, but a symptom of an underlying disease.

Disease

Diseases that cause peripheral neuropathies may either be acquired or inherited; in some cases, it is difficult to make that distinction. The diabetes-peripheral neuropathy link has been well established. A typical pattern of diabetes-associated neuropathic symptoms includes sensory effects that first begin in the feet. The associated pain or pins-and-needles, burning, crawling, or prickling sensations form a typical "stocking" distribution in the feet and lower legs. Other diabetic neuropathies affect the autonomic nerves and have potentially fatal cardiovascular complications.
Several other metabolic diseases have a strong association with peripheral neuropathy. Uremia, or chronic kidney failure, carries a 10-90% risk of eventually developing neuropathy, and there may be an association between liver failure and peripheral neuropathy. Accumulation of lipids inside blood vessels (atherosclerosis) can choke-off blood supply to certain peripheral nerves. Without oxygen and nutrients, the nerves slowly die. Mild polyneuropathy may develop in persons with low thyroid hormone levels. Individuals with abnormally enlarged skeletal extremities (acromegaly), caused by an overabundance of growth hormone, may also develop mild polyneuropathy.
Neuropathy can also result from severe vasculitides, a group of disorders in which blood vessels are inflamed. When the blood vessels are inflamed or damaged, blood supply to the nerve can be affected, injuring the nerve.
Both viral and bacterial infections have been implicated in peripheral neuropathy. Leprosy is caused by the bacteria M. leprae, which directly attack sensory nerves. Other bacterial illness may set the stage for an immune-mediated attack on the nerves. For example, one theory about Guillain-Barré syndrome involves complications following infection with Campylobacter jejuni, a bacterium commonly associated with food poisoning. This bacterium carries a protein that closely resembles components of myelin. The immune system launches an attack against the bacteria; but, according to the theory, the immune system confuses the myelin with the bacteria in some cases and attacks the myelin sheath as well. The underlying cause of neuropathy associated with Lyme disease is unknown; the bacteria may either promote an immune-mediated attack on the nerve or inflict damage directly.
Infection with certain viruses is associated with extremely painful sensory neuropathies. A primary example of such a neuropathy is caused by shingles. After a case of chickenpox, the causative virus, varicella-zoster virus, becomes inactive in sensory nerves. Years later, the virus may be reactivated. Once reactivated, it attacks and destroys axons. Infection with HIV is also associated with peripheral neuropathy, but the type of neuropathy that develops can vary. Some HIV-linked neuropathies are noted for myelin destruction rather than axonal degradation. Also, HIV infection is frequently accompanied by other infections, both bacterial and viral, that are associated with neuropathy.
Several types of peripheral neuropathies are associated with inherited disorders. These inherited disorders may primarily involve the nervous system, or the effects on the nervous system may be secondary to an inherited metabolic disorder. Inherited neuropathies can fall into several of the principal syndromes, because symptoms may be sensory, motor, or autonomic. The inheritance patterns also vary, depending on the specific disorder. The development of inherited disorders is typically drawn out over several years and may herald a degenerative condition—that is, a condition that becomes progressively worse over time. Even among specific disorders, there may be a degree of variability in inheritance patterns and symptoms. For example, Charcot-Marie-Tooth disease is usually inherited as an autosomal dominant disorder, but it can be autosomal recessive or, in rare cases, linked to the X chromosome. Its estimated frequency is approximately one in 2,500 people. Age of onset and sensory nerve involvement can vary between cases. The main symptom is a degeneration of the motor nerves in legs and arms, and resultant muscle atrophy. Other inherited neuropathies have a distinctly metabolic component. For example, in familial amyloid polyneuropathies, protein components that make up the myelin are constructed and deposited incorrectly.

Physical injury

Accidental falls and mishaps during sports and recreational activities are common causes of physical injuries that can result in peripheral neuropathy. The common types of injuries in these situations occur from placing too much pressure on the nerve, exceeding the nerve's capacity to stretch, blocking adequate blood supply of oxygen and nutrients to the nerve, and tearing the nerve. Pain may not always be immediately noticeable, and obvious signs of damage may take a while to develop.
These injuries usually affect one nerve or a group of closely associated nerves. For example, a common injury encountered in contact sports such as football is the "burner," or "stinger," syndrome. Typically, a stinger is caused by overstretching the main nerves that span from the neck into the arm. Immediate symptoms are numbness, tingling, and pain that travels down the arm, lasting only a minute or two. A single incident of a stinger is not dangerous, but recurrences can eventually cause permanent motor and sensory loss.

Poisoning

The poisons, or toxins, that cause peripheral neuropathy include drugs, industrial chemicals, and environmental toxins. Neuropathy that is caused by drugs usually involves sensory nerves on both sides of the body, particularly in the hands and feet, and pain is a common symptom. Neuropathy is an unusual side effect of medications; therefore, most people can use these drugs safely. A few of the drugs that have been linked with peripheral neuropathy include metronidazole, an antibiotic; phenytoin, an anticonvulsant; and simvastatin, a cholesterol-lowering medication.
Certain industrial chemicals have been shown to be poisonous to nerves (neurotoxic) following work-related exposures. Chemicals such as acrylamide, allyl chloride, and carbon disulfide have all been strongly linked to development of peripheral neuropathy. Organic compounds, such as N-hexane and toluene, are also encountered in work-related settings, as well as in glue-sniffing and solvent abuse. Either route of exposure can produce severe sensorimotor neuropathy that develops rapidly.
Heavy metals are the third group of toxins that cause peripheral neuropathy. Lead, arsenic, thallium, and mercury usually are not toxic in their elemental form, but rather as components in organic or inorganic compounds. The types of metal-induced neuropathies vary widely. Arsenic poisoning may mimic Guillain-Barré syndrome; lead affects motor nerves more than sensory nerves; thallium produces painful sensorimotor neuropathy; and the effects of mercury are seen in both the CNS and PNS.

Malnutrition and alcohol abuse

Burning, stabbing pains and numbness in the feet, and sometimes in the hands, are distinguishing features of alcoholic neuropathy. The level of alcohol consumption associated with this variety of peripheral neuropathy has been estimated as approximately 3 L of beer or 300 mL of liquor daily for three years. However, it is unclear whether alcohol alone is responsible for the neuropathic symptoms, because chronic alcoholism is strongly associated with malnutrition.
Malnutrition refers to an extreme lack of nutrients in the diet. It is unknown precisely which nutrient deficiencies cause peripheral neuropathies in alcoholics and famine and starvation patients, but it is suspected that the B vitamins have a significant role. For example, thiamine (vitamin B1) deficiency is the cause of beriberi, a neuropathic disease characterized by heart failure and painful polyneuropathy of sensory nerves. Vitamin E deficiency seems to have a role in both CNS and PNS neuropathy.

Diagnosis

Clinical symptoms can indicate peripheral neuropathy, but an exact diagnosis requires a combination of medical history, medical tests, and possibly a process of exclusion. Certain symptoms can suggest a diagnosis, but more information is commonly needed. For example, painful, burning feet may be a symptom of alcohol abuse, diabetes, HIV infection, or an underlying malignant tumor, among other causes. Without further details, effective treatment would be difficult.
During a physical examination, an individual is asked to describe the symptoms very carefully. Detailed information about the location, nature, and duration of symptoms can help exclude some causes or even pinpoint the actual problem. The person's medical history may also provide clues as to the cause, because certain diseases and medications are linked to specific peripheral neuropathies. A medical history should also include information about diseases that run in the family, because some peripheral neuropathies are genetically linked. Information about hobbies, recreational activities, alcohol consumption, and work place activities can uncover possible injuries or exposures to poisonous substances.
The physical examination also includes blood tests, such as those that check levels of glucose and creatinine to detect diabetes and kidney problems, respectively. A blood count is also done to determine levels of different blood cell types. Iron, vitamin B12, and other factors may be measured as well, to rule out malnutrition. More specific tests, such as an assay for heavy metals or poisonous substances, or tests to detect vasculitis, are not typically done unless there is reason to suspect a particular cause.
An individual with neuropathy may be sent to a doctor that specializes in nervous system disorders (neurologist). By considering the results of the physical examination and observations of the referring doctor, the neurologist may be able to narrow down the possible diagnoses. Additional tests, such as nerve conduction studies and electromyography, which tests muscle reactions, can confirm that nerve damage has occurred and may also be able to indicate the nature of the damage. For example, some neuropathies are characterized by destruction of the myelin. This type of damage is shown by slowed nerve conduction. If the axon itself has suffered damage, the nerve conduction may be slowed, but it will also be diminished in strength. Electromyography adds further information by measuring nerve conduction and muscle response, which determines whether the symptoms are due to a neuropathy or to a muscle disorder.
In approximately 10% of peripheral neuropathy cases, a nerve biopsy may be helpful. In this test, a small part of the nerve is surgically removed and examined under a microscope. This procedure is usually the most helpful in confirming a suspected diagnosis, rather than as a diagnostic procedure by itself.

Treatment

Treat the cause

Attacking the underlying cause of the neuropathy can prevent further nerve damage and may allow for a better recovery. For example, in cases of bacterial infection such as leprosy or Lyme disease, antibiotics may be given to destroy the infectious bacteria. Viral infections are more difficult to treat, because antibiotics are not effective against them. Neuropathies associated with drugs, chemicals, and toxins are treated in part by stopping exposure to the damaging agent. Chemicals such as ethylenediaminetetraacetic acid (EDTA) are used to help the body concentrate and excrete some toxins. Diabetic neuropathies may be treated by gaining better control of blood sugar levels, but chronic kidney failure may require dialysis or even kidney transplant to prevent or reduce nerve damage. In some cases, such as compression injury or tumors, surgery may be considered to relieve pressure on a nerve.
In a crisis situation, as in the onset of Guillain-Barré syndrome, plasma exchange, intravenous immunoglobulin, and steroids may be given. Intubation, in which a tube is inserted into the trachea to maintain an open airway, and ventilation may be required to support the respiratory system. Treatment may focus more on symptom management than on combating the underlying cause, at least until a definitive diagnosis has been made.

Supportive care and long-term therapy

Some peripheral neuropathies cannot be resolved or require time for resolution. In these cases, long-term monitoring and supportive care is necessary. Medical tests may be repeated to chart the progress of the neuropathy. If autonomic nerve involvement is a concern, regular monitoring of the cardiovascular system may be carried out.
Because pain is associated with many of the neuropathies, a pain management plan may need to be mapped out, especially if the pain becomes chronic. As in any chronic disease, narcotics are best avoided. Agents that may be helpful in neuropathic pain include amitriptyline, carbamazepine, and capsaicin cream. Physical therapy and physician-directed exercises can help maintain or improve function. In cases in which motor nerves are affected, braces and other supportive equipment can aid an individual's ability to move about.

Prognosis

The outcome for peripheral neuropathy depends heavily on the cause. Peripheral neuropathy ranges from a reversible problem to a potentially fatal complication. In the best cases, a damaged nerve regenerates. Nerve cells cannot be replaced if they are killed, but they are capable of recovering from damage. The extent of recovery is tied to the extent of the damage and a person's age and general health status. Recovery can take weeks to years, because neurons grow very slowly. Full recovery may not be possible and it may also not be possible to determine the prognosis at the outset.
If the neuropathy is a degenerative condition, such as Charcot-Marie-Tooth disease, an individual's condition will become worse. There may be periods of time when the disease seems to reach a plateau, but cures have not yet been discovered for many of these degenerative diseases. Therefore, continued symptoms, potentially worsening to disabilities are to be expected.

Key terms

Afferent — Refers to peripheral nerves that transmit signals to the spinal cord and the brain. These nerves carry out sensory function.
Autonomic — Refers to peripheral nerves that carry signals from the brain and that control involuntary actions in the body, such as the beating of the heart.
Autosomal dominant or autosomal recessive — Refers to the inheritance pattern of a gene on a chromosome other than X or Y. Genes are inherited in pairs—one gene from each parent. However, the inheritance may not be equal, and one gene may overshadow the other in determining the final form of the encoded characteristic. The gene that overshadows the other is called the dominant gene; the overshadowed gene is the recessive one.
Axon — A long, threadlike projection that is part of a nerve cell.
Central nervous system (CNS) — The part of the nervous system that includes the brain and the spinal cord.
Efferent — Refers to peripheral nerves that carry signals away from the brain and spinal cord. These nerves carry out motor and autonomic functions.
Electromyography — A medical test that assesses nerve signals and muscle reactions. It can determine if there is a disorder with the nerve or if the muscle is not capable of responding.
Inheritance pattern — Refers to dominant or recessive inheritance.
Motor — Refers to peripheral nerves that control voluntary movements, such as moving the arms and legs.
Myelin — The protective coating on axons.
Nerve biopsy — A medical test in which a small portion of a damaged nerve is surgically removed and examined under a microscope.
Nerve conduction — The speed and strength of a signal being transmitted by nerve cells. Testing these factors can reveal the nature of nerve injury, such as damage to nerve cells or to the protective myelin sheath.
Neurotransmitter — Chemicals within the nervous system that transmit information from or between nerve cells.
Peripheral nervous system (PNS) — Nerves that are outside of the brain and spinal cord.
Sensory — Refers to peripheral nerves that transmit information from the senses to the brain.
A few peripheral neuropathies are eventually fatal. Fatalities have been associated with some cases of diphtheria, botulism, and others. Some diseases associated with neuropathy may also be fatal, but the ultimate cause of death is not necessarily related to the neuropathy, such as with cancer.

Prevention

Peripheral neuropathies are preventable only to the extent that the underlying causes are preventable. Steps that a person can take to prevent potential problems include vaccines against diseases that cause neuropathy, such as polio and diphtheria. Treatment for physical injuries in a timely manner can help prevent permanent or worsening damage to nerves. Precautions when using certain chemicals and drugs are well advised in order to prevent exposure to neurotoxic agents. Control of chronic diseases such as diabetes may also reduce the chances of developing peripheral neuropathy.
Although not a preventive measure, genetic screening can serve as an early warning for potential problems. Genetic screening is available for some inherited conditions, but not all. In some cases, presence of a particular gene may not mean that a person will necessarily develop the disease, because there may be environmental and other components involved.

Resources

Organizations

American Diabetes Association. 1701 North Beauregard Street, Alexandria, VA 22311. (800) 342-2383. http://www.diabetes.org.
Myelin Project Headquarters. Suite 225, 2001 Pennsylvania Ave., N.W., Washington, D.C. 20006-1850. (202) 452-8994. http://www.myelin.org.
Neuropathy Association. 60 E. 42nd St., Suite 942, New York, NY 10165. (800) 247-6968. 〈http://www.neuropathy.org/association.html〉.
Gale Encyclopedia of Medicine. Copyright 2008 The Gale Group, Inc. All rights reserved.

peripheral neuropathy

n.
Neuropathy resulting from damage to the peripheral nervous system and characterized by symptoms such as numbness, burning, muscle weakness, and organ dysfunction. Peripheral neuropathy can be caused by physical trauma, a systemic disorder such as diabetes mellitus or peripheral vascular disease, or an autoimmune disorder.
The American Heritage® Medical Dictionary Copyright © 2007, 2004 by Houghton Mifflin Company. Published by Houghton Mifflin Company. All rights reserved.

peripheral neuropathy

Peripheral neuritis Neurology A functional defect of nerves outside the spinal cord, due to damage of peripheral nerves, axons or myelin sheath Clinical Numbness, weakness, burning pain–especially nocturnal, loss of reflexes; Sx depend on whether the 1º disorder affects sensory or motor nerve fibers or both; damage to sensory fibers results in changes in sensation ranging from perception of abnormal sensation, to pain, to ↓ sensation or lack of sensation in the area; sensory changes usually begin in the feet or hands and progress centrally with axon degeneration; motor fiber damage ↓ movement or control of movement of the area supplied by the nerve; loss of neural function causes trophic changes in muscle, bone, skin, hair, nails, etc; structural changes caused by lack of nervous stimulation, not using the affected area, immobility, lack of weight bearing, muscle weakness and atrophy; recurrent injury to the area may cause infection or structural damage–ulcer, poor healing, loss of tissue mass, scarring, deformity Types Single nerve/nerve group–mononeuropathy, multiple nerves–polyneuropathy Etiology Demyelination Idiopathic, pressure injury caused by direct injury, or compression by peripheral nerve or other tumors, abnormal bone growth, cysts, casts, splints, braces, crutches, etc, systemic causes–connective tissue disease, vasculitis, hereditary, metabolic or chemical disorders, Charcot-Marie-Tooth disease, Friedreich's ataxia, sniffing glue, nitrous oxide, industrial agents--eg, solvents, heavy metals–lead, arsenic, mercury, etc, infections and inflammation–AIDS, botulism, Colorado tick fever, diphtheria, Guillain-Barre syndrome, HIV infection, leprosy, periarteritis nodosa, polyarteritis, rheumatoid arthritis, sarcoidosis, syphilis, systemic lupus erythematosus, neuropathy secondary to drugs, hypoxia, prolonged exposure to cold, damage to sensory nerves of hands and feet, causing tingling or ↓ sense of touch in the hands and feet, DM–diabetic neuropathy, dietary deficiencies–especially vitamin B, alcoholism–alcoholic neuropathy, uremia, systemic effects of CA, myeloma, lung CA, lymphoma, leukemia. See Autonomic nervous system, Entrapment.
McGraw-Hill Concise Dictionary of Modern Medicine. © 2002 by The McGraw-Hill Companies, Inc.

Patient discussion about peripheral neuropathy

Q. I am interested in finding info on Peripheral neuropathy and its symptoms. I wonder if I have it. I have restless leg syndrome discovered via a sleep clinic. A small tingling area developed in my back about 8 years ago. Nothing was disclosed to me about it and it progressed further up the back. I now wake up some nights with what I describe as left shoulder knot that makes left arm tingle and feel numb. Sometimes also goes down through to the left leg. It makes me feel jumpy and have trouble getting back to sleep. I rub Benyln on shoulder and take Tylenol. I eventually fall back to sleep. I do not have a family Dr. as she closed her practice and I must now visit walkin clinics. A stress test was recently done as I was having chest pain. Dr. thinks it's due to my Acid Reflux. HELP!

A. numbness and tingling can be symptoms of 25 possible cases. how i know? i just typed those symptoms in this symptom checker, and this is what i got:
http://www.healthline.com/symptomsearch?addterm=Tingling

about neuropathy- as i recall (and i could be wrong here), in most cases it's a symptom that something cause. your nervous system usually don't just shut off with no reason.

More discussions about peripheral neuropathy
This content is provided by iMedix and is subject to iMedix Terms. The Questions and Answers are not endorsed or recommended and are made available by patients, not doctors.
References in periodicals archive ?
* Quit smoking, since it can impact blood circulation and worsen peripheral neuropathy symptoms.
Total number of non-traumatic upper limb neuropathy patients were 39 and traumatic peripheral neuropathy patients were 12 in number (Table 2).
The history and physical examination provides essential information for detecting peripheral neuropathy. Typically, the early symptoms of DPN include the gradual loss of sensation and/or development of pain.
In this study, whether impaired glucose regulation combined with peripheral neuropathy was considered as the dependent variable or the FBG, OGTT2h glucose, HbA1c, TG, TC, HDL-C, LDL-C, CRP, IL-6, and TNF-[alpha] were considered as the independent variable for logistic regression analysis, the results showed that TNF-[alpha] (OR = 0.893; p = 0.009) was independent factor affecting whether impaired glucose regulation patient could have peripheral neuropathy.
The underlying pathophysiology of diabetic peripheral neuropathy is not clearly understood possibly a long standing hyperglycaemia gradually leads to neurovascular damage and ultimately neuropathy.8
According to the previous studies, significant decrements in sensory action potential (SAP) amplitudes for the median and sural nerves have been shown to be indicators for early detection of n-hexane-induced peripheral neuropathy in asymptomatic workers with exposure to n-hexane [4,11].
Adding them to your arsenal of therapeutic choices for patients with painful peripheral neuropathy may increase your ability to provide successful treatment.
To identify the link between these drugs and peripheral neuropathy, researchers conducted a study of 6,226 men between the ages of 45 to 80 who were suffering from the condition.
Peripheral neuropathy in COPD has received scanty attention despite the fact that very often clinicians come across COPD patients having clinical features suggestive of peripheral neuropathy while this comorbidity is often overlooked & considered a separate entity.
Mitochondrial dysfunction resulting from mutations and/or deletion of mitochondrial DNA (mtDNA) has been implicated in many neurological/ neurodegenerative diseases, including peripheral neuropathy. To investigate the effects of mtDNA depletion in peripheral neuropathy, we have developed a cell model with mtDNA deletion employing dorsal root ganglion (DRG) neurons, an important neural cell type in the peripheral nervous system.
Peripheral Neuropathy & Neuropathic Pain: Into the Light

Full browser ?